
Novel multifunctional SHINE fibres enhance human-robot interactions in applications ranging from smart textiles to robotics.
A team of interdisciplinary scientists from the Department of Materials Science and Engineering under the College of Design and Engineering at the National University of Singapore (NUS) has developed flexible fibres with self-healing, light-emitting and magnetic properties. The Scalable Hydrogel-clad Ionotronic Nickel-core Electroluminescent (SHINE) fibre is bendable, emits highly visible light, and can automatically repair itself after being cut, regaining nearly 100 per cent of its original brightness.
In addition, the fibre can be powered wirelessly and manipulated physically using magnetic forces. With multiple useful features incorporated into a single device, the fibre finds potential applications as light-emitting soft robotic fibres and interactive displays. It can also be woven into smart textiles. “Most digital information today is transmitted largely through light-emissive devices.
We are very interested in developing sustainable materials that can emit light and explore new form factors, such as fibres, that could extend application scenarios, for example, smart textiles. One way to engineer sustainable light-emitting devices is to make them self-healable, just like biological tissues such as skin,” said Associate Professor Benjamin Tee, the lead researcher for this study. The team’s research, conducted in collaboration with the Institute for Health Innovation & Technology (iHealthtech) at NUS, was published in Nature Communications on 3 December 2024.
Multifunctional innovation in a single device
Light-emitting fibres have become an area of burgeoning interest owing to their potential to complement existing technologies in multiple domains, including soft robotics, wearable electronics and smart textiles. For instance, providing functionalities like dynamic lighting, interactive displays and optical signalling, all while offering flexibility and adaptability, could improve human-robot interactions by making them more responsive and intuitive. However, the use of such fibres is often limited by physical fragility and the difficulty of integrating multiple features into one single device without adding complexity or increasing energy demands.
The NUS research team’s SHINE fibre addresses these challenges by combining light emission, self-healing and magnetic actuation in a single, scalable device. In contrast to existing light-emitting fibres on the market, which cannot self-repair after damage or be physically manipulated, the SHINE fibre offers a more efficient, durable and versatile alternative.